博客
关于我
计算机视觉 创建全景图
阅读量:780 次
发布时间:2019-03-24

本文共 556 字,大约阅读时间需要 1 分钟。

在尝试使用RANSAC算法进行图像拼接的过程中,遇到了以下问题和解决思路:

错误分析与解决

在运行RANSAC算法时,出现了“ValueError: did not meet fit acceptance criteria”错误。这意味着模型在拟合过程中不满足预期的标准。可能的原因是特征点匹配不准确或噪声较大。

调整压缩设置

调整图片压缩大小:最初使用过小的图片导致Running error,适当增大图片大小以保证特征提取的质量。

优化delta值

调整delta值:通过多次尝试找到合适的delta值,确保图像的平移和拉伸效果适中,避免出现黑框或断层现象。

替换特征提取方法

为了提高特征匹配准确率,尝试使用不同的特征提取算法,如SIFT、FAST等,结合不同的匹配方法,如BruteForce、CrossRatio等直到找到最佳的组合。

光线和视角调整

验证在拍摄图片时,光线变化和视角稳定性是否达到要求,避免大光线变化导致特征点匹配不准。

代码小优化

说明在使用过程中需要注意一些代码逻辑的细节,比如在 baiting 的 额外空间,需要确保点的坐标正确。

应用总结

通过多次实验和参数调整,成功实现了图像的无缝拼接。经验表明,在不同光照和角度下的图片拼接面临更大挑战,需确保基础图像质量和贴图准确性。

转载地址:http://nghkk.baihongyu.com/

你可能感兴趣的文章
NLP 时事和见解【2023】
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>